News

In the Immune System’s Trenches, a New Discovery

Few everyday scenarios illicit as much trepidation as a nearby sneeze during flu season. Suddenly surrounded by tens of thousands of potentially virus-filled particles, a person’s evolving cellular reaction actually matters far more than the ability to shield one’s...

Pediatric leukemia ‘super drug’ could be developed in the coming years

Pediatric leukemia ‘super drug’ could be developed in the coming years

Northwestern Medicine scientists have discovered two successful therapies that slowed the progression of pediatric leukemia in mice, according to three studies published over the last two years in the journal Cell, and the final paper published Dec. 20 in Genes & Development.

When a key protein responsible for leukemia, MLL, is stabilized, it slows the progression of the leukemia, the most recent study found. The next step will be to combine the treatments from the past two years of research into a pediatric leukemia “super drug” to test on humans in a clinical trial.

The survival rate is only 30 percent for children diagnosed with MLL-translocation leukemia, a cancer that affects the blood and bone marrow. Patients with leukemia have a very low percentage of red blood cells, making them anemic, and have approximately 80 times more white blood cells than people without cancer.

“These white blood cells infiltrate many of the tissues and organs of the affected individuals and is a major cause of death in leukemia patients,” said senior author Ali Shilatifard, the Robert Francis Furchgott Professor of Biochemistry and Molecular Genetics and Pediatrics, the chairman of biochemistry and molecular genetics and the director of Northwestern’s Simpson Querrey Center for Epigenetics. “This is a monster cancer that we’ve been dealing with for many years in children.”

There are several types of leukemia. This research focused on the two most common found in infants through teenagers: acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL).

For the past 25 years, Shilatifard’s laboratory has been studying the molecular function of MLL within its complex known as COMPASS (Complex Proteins Associated with Set1). Most recently, it was demonstrated that COMPASS components are one of the most frequently identified mutations in cancer. The next step of this work will be to bring the drug to a clinical trial setting, which Shilatifard said he hopes will happen in the next three to five years.

“I’ve been working on this translocation for more than two decades, and we’re finally at the point where in five to 10 years, we can get a drug in kids that can be effective,” Shilatifard said. “If we can bring that survival rate up to 85 percent, that’s a major accomplishment.”

Earlier work from Shilatifard’s laboratory published in Cell in 2018 identified compounds that could slow cancer growth by interrupting a gene transcription process known as “Super Elongation Complex” (SEC). It was the first compound in its class to do this.

This MLL stabilization process discovered in the most recent paper could potentially work in cancers with solid tumors, such as breast or prostate cancer, said first author Zibo Zhao, a postdoctoral research fellow in Shilatifard’s lab.

“This opens up a new therapeutic approach not only for leukemia, which is so important for the many children who are diagnosed with this terrible cancer, but also for other types of cancers that plague the population,” Zhao said.

“The publication of these four papers and the possibility of a future human clinical trial could not have happened if it weren’t for the cross-disciplinary collaboration at Northwestern,” Shilatifard said.

###

This collective research was made possible because of the interdisciplinary collaboration between Northwestern’s chemistry, biochemistry, biology and clinical departments, Shilatifard said.

Other Northwestern co-authors included Lu Wang, Andrew Volk, Noah Birch, Kristen Stoltz, Elizabeth Bartom, Stacy Marshall, Emily Rendleman, Carson Nestler, Joseph Shilati, Gary Schiltz and John Crispino. Shilatifard and Crispino are members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Funding for this research was provided in part by the National Institutes of Health grant T32 CA070085 and the National Cancer Institute Outstanding Investigator Award R35-CA197569.

By Kristin Samuelson.

Original story appeared in Northwestern Now on December 21, 2019.

Ali Shilatifard is a member of the Chemistry of Life Processes Institute. Kirsten Stoltz and Gary Schiltz work in Chemistry of Life Processes Institute’s Center for Molecular Innovation and Drug Discovery. 

Click here to learn more about the resources and research capabilities of CMIDD.

Carla Rosenfeld appointed associate director of CLP’s Quantitative Bioelement Imaging Center

Carla Rosenfeld appointed associate director of CLP’s Quantitative Bioelement Imaging Center

The Chemistry of Life Processes Institute (CLP) has appointed Dr. Carla Rosenfeld associate director, Quantitative Bioelement Imaging Center (QBIC) at Northwestern University.

In this capacity, Rosenfeld will lead the facility into its next phase of growth and development as a national resource for bio-element imaging and analysis.  Her responsibilities include operation and routine maintenance of facility instruments, training and supervising student users, supervision of technical staff, grant writing and advising faculty on experimental design and data analyses.

Previously, Rosenfeld held the position of visiting research associate in the Molecular Environmental Sciences Group, Biosciences Division, Argonne National Laboratory, where she focused on trace metal biogeochemistry and water quality. Rosenfeld completed her postdoctoral fellowship in environmental chemistry and microbiology at the Smithsonian Institution (Department of Mineral Sciences) and University of Minnesota (Department of Earth Sciences), where she held an NSF Postdoctoral Fellowship. She received her Ph.D. research in Soil Science and Biogeochemistry from Penn State University and B.S. degree in Chemistry from McGill University.

Rosenfeld’s expertise includes analysis of metals in numerous environmental and biological matrices and preparing solid samples for analysis and other analytical approaches including electron microscopy, chromatography, Fourier transform infrared (FTIR) spectroscopy, X-ray absorption spectroscopy (XAS), and X-ray diffraction (XRD), and X-ray fluorescence (XRF).  An experienced manager and grant writer, she has also overseen multiple interdisciplinary environmental science projects, operated and maintained numerous analytical instruments, coordinated field and laboratory endeavors and trained and supervised students.

About QBIC

Located in Silverman Hall on Northwestern University’s Evanston campus, QBIC focuses on the development and application of novel tools, methods, and instrumentation for the analysis and mapping of inorganic elements in biological samples.  Transitional metal atoms are found within all living cells and are conserved during evolutionary processes. Through a suite of high-resolution instruments capable of quantitatively imaging biologically essential elements in individual cells, QBIC’s instrumentation enables physical, life, and material scientists to analyze metal quotas at scales ranging from the subcellular level to entire ecosystems shaping global biogeochemical cycles. This work sheds light on the co-evolution of microbial and eukaryotic life within a broad range of challenging chemical environments.

A shared resource facility serving investigators within the Northwestern scientific community and beyond, QBIC provides researchers with access to state-of-the-art imaging and quantification instrumentation while supporting its use with an expert technical staff that offers a range of services, including instrument training, sample preparation and analysis, experiment design, and grant proposal assistance.  The combination of both extremely high sensitivity elemental analysis and high resolution imaging enables QBIC customers to perform cutting edge experiments with expert staff support. Operating under the direction of Thomas O’Halloran, Charles E. and Emma H. Morrison Professor of Chemistry and founding director of CLP, QBIC is the only facility in the greater Chicago area with multiple inductively coupled plasma (ICP) systems dedicated to the analysis of inorganic elements in biological and materials samples. Additionally, QBIC offers the only laser ablation system dedicated to mapping biological samples in the Chicago area.

by Lisa La Vallee

Full-Body Scan Could Improve Chemotherapy Effectiveness

Full-Body Scan Could Improve Chemotherapy Effectiveness

A new full-body scan could help clinicians to better assess toxicity during cancer treatment, according to a Northwestern Medicine study published in Clinical Cancer Research.

The scan, which detects the presence of molecules exposed during tissue damage, could give a precise evaluation of patient toxicity during chemotherapy, said Ming Zhao, PhD, associate professor of Medicine in the Division of Cardiology and senior author of the study.

“After a single chemotherapy treatment, you already see changes,” said Zhao, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. “This could give doctors the opportunity to intervene and reduce the dose or switch to another drug for example, hopefully preventing any further damage to the patient.”

SPECT/CT fusion images of the femurs in control and methotrexate treated animals are presented. Significant signal elevation was detected in the bones. Hematoxylin and eosin-stained section of femoral bone demonstrates a depletion of hematopoietic cells in bone marrow of methotrexate-treated animals.

Steven Johnson, ’18 PhD, postdoctoral fellow in the Zhao laboratory, was lead author of the study.

Chemotherapy works by targeting and killing actively dividing cells. While this fights cancer, casting such a wide therapeutic net damages healthy cells as well, resulting in potentially harmful side effects in patients.

While there are a range of clinical tools to measure cancer’s response to chemotherapy, tools that assess patient toxicity are limited, according to Zhao.

“While tumor kill is the main therapeutic goal in anticancer treatment, toxicity is equally important because it tends to dictate the patients’ tolerance ceiling for treatment,” Zhao said. “Current tools rely on patient symptoms and subsequent blood or serum tests, which can lag behind actual tissue damage. Instead, an imaging based method could be a quicker and more accurate way to ascertain patient toxicity.”

In the current study, scientists mapped tissue damage in rodent models using a novel whole-body imaging technique developed in collaboration with the Chemistry of Life Processes Institute’s Center for Advanced Molecular Imaging (CAMI). The technique detected a lipid molecule that is not accessible in normal cells, but becomes visible in dead and dying cells.

The lipid molecule, called phosphatidylethanolamine (PE), usually resides inside the cell. However, when a cell dies, it deactivates enzymes that maintain the asymmetrical structure of the cell membrane, redistributing PE to the cell surface.

“This provides a molecular marker for detecting cell death,” Zhao said.

The scientists compared the results of blood and serum tests to the imaging results, finding the signal changes in the scans correlated with the results of the conventional tests — with the scan providing earlier, broader and more dynamic information, according to Zhao.

“Damage to the skin can be highly local; if you take a biopsy, you might miss it,” he said. “With this test, you look at the entire organ; if there is a heterogeneous distribution of damaged tissue, you can tell where it went wrong.”

They also tested the scan in both male and female rodents, finding it detected damage in reproductive organs, a life-changing issue for some patients.

“Reproduction is a major issue in younger patients,” Zhao said. “This may help predict if this individual will have problems down the line.”

Further, the scan could also detect damage, or lack thereof, in the tumor itself, providing another data point to drive clinical decision making.

“A lack of PE on the tumor will tell you that the drug isn’t killing the tumor effectively, suggesting you should make the decision to switch to another treatment,” Zhao said. “This scan should help optimize cancer treatment to maximize tumor damage and minimize side effects.”

Now, Zhao and his collaborators are exploring the technology’s potential in humans.

“We’ve shown the proof of concept; this can be done,” Zhao said. “But for human translation, we need to make sure everything works well — and safely.”

Currently, the scientists are working on implementing a second-generation imaging agent, which could produce significantly greater data quality for clinical translation.

The study was an inter-departmental and interdisciplinary effort, involving authors from different areas of expertise. Co-authors included Chad Haney, PhD, research associate professor of Chemistry of Life Processes Institute, Biomedical Engineering, and of Radiology; Gennadiy Bondarenko, PhD, postdoctoral fellow; Emily Waters, research associate at the CAMI; Andy Tran, research assistant; Thomas O’Halloran, PhD, professor of Medicine in the Division of Endocrinology, Metabolism and Molecular Medicine. Former Feinberg faculty Raymond Bergan, MD; Andrew Mazar, PhD; Andrey Ugolkov, MD, PhD and Lin Li, MD, were also co-authors.

This work was funded by a “Provocative Questions” grant from the National Cancer Institute (NCI) R01 CA185214 awarded through the Chemistry of Life Processes Institute, 1S10OD016398 to fund acquisition of the SPECT/CT scanner in CAMI, and 5R01HL102085 and NCI CCSG P30

by Will Doss

Original story published in Northwestern Medicine on January 9.

Young black gay men have vastly higher HIV rates yet fewer partners

Young black gay men have vastly higher HIV rates yet fewer partners

Young black men who have sex with men (MSM) are 16 times more likely to have an HIV infection than their white peers despite more frequent testing for HIV and being less likely to have unsafe sex, reports a new Northwestern Medicine study.

The study was recently published in the Journal of Acquired Immunodeficiency Syndromes.

If these rates persist, one out of every two black MSM will become infected with HIV at some point in their lives, compared to one in five Hispanic MSM and one in 11 white MSM, reports the Centers for Disease Control and Prevention.

“We have known from prior studies that this paradox exists — black young MSM engage in fewer risk behaviors but have a much higher rate of HIV diagnosis,” said senior study author Brian Mustanski, professor of medical social sciences at Northwestern University Feinberg School of Medicine and director of the Northwestern Institute for Sexual and Gender Minority Health and Wellbeing. “Our study illuminates how HIV disparities emerge from complex social and sexual networks and inequalities in access to medical care for those who are HIV positive.”

“Their social and sexual networks are more dense and interconnected, which from an infectious disease standpoint makes infections transmitted more efficiently through the group,” Mustanski said. “That, coupled with the higher HIV prevalence in the population, means any sexual act has a higher chance of HIV transmission.”

The study is the largest and most comprehensive to assess why these disparities exist. It analyzed young black MSM’s social networks, such as past sexual partners, as well as measures of stress, past trauma and stigma. The authors used data from RADAR, a project funded by the National Institute on Drug Abuse, that identifies drivers of HIV infections on multiple levels, including sexual partner and relationship characteristics, network dynamics and community-level factors. The study collected data from 1,015 MSM between the ages of 16 and 29 living in the Chicago metropolitan area.

Among the study’s key findings about racial disparities in HIV infection:

  • Black MSM reported the lowest number of sexual partners overall.
  • Black MSM tested for HIV more frequently but were more likely to have a detectable HIV viral load if HIV positive.
  • Black MSM were more likely to report not having close relationships with their sexual partners.
  • Black MSM were more likely to report hazardous marijuana use, while white MSM were more likely to report high levels of alcohol problems.
  • Black MSM experienced greater levels of stigma, victimization, trauma and childhood sexual abuse.

The study’s findings suggest current HIV prevention efforts are effective in reducing risky sexual behaviors and promoting awareness about the importance of HIV testing among black MSM.

“Overall, young black MSM do not report higher rates of HIV risk behaviors like condomless sex,” said Ethan Morgan, a postdoctoral fellow at Northwestern’s Institute of Sexual and Gender Minority Health and Wellbeing and a co-author on the study. “But aspects of their social networks align with increased HIV risk. By learning more about young black MSM’s social networks, we can better understand what drives such persistent racial disparities in HIV — and close that gap.”

Other Northwestern authors include Richard D’Aquila, Michelle Birkett, Patrick Janulis and Michael Newcomb.

Study co-author Richard D’Aquila is a member of the Chemistry of Life Processes Institute.

Original story published in Northwestern Now on December 04, 2018 by Marla Paul

Altruism, curiosity drive CLP undergraduate awardee Viswajit Kandula

Altruism, curiosity drive CLP undergraduate awardee Viswajit Kandula

“As an undergrad, I finally thought I knew what I wanted to do, but I’ve been constantly swayed by new things that are creative and exciting,” says Viswajit Kandula, this year’s recipient of Chemistry of Life Processes Institute’s Chicago Area Undergraduate Research Symposium Award (CAURS) undergraduate award.

A third-year biomedical engineering undergraduate enrolled in Northwestern University’s McCormick School of Engineering and Honors Program in Medical Education, Kandula will earn his undergraduate degree in three years, then immediately begin training as a medical doctor at Feinberg School of Medicine.

Each year, one undergraduate student receives the award based on his or her academic achievements and scientific interests. Recipients receive $1,000 for interdisciplinary research with a CLP faculty member, purchase of scientific supplies and registration and travel costs to the Symposium in April 2019 where the recipient is required to present his/her research.  The CLP CAURS program was established and continues to be supported by a CLP alum and Executive Advisory Board member, Dr. Chandler Robinson.

“I wanted to have the experience of going to conferences and sharing my research because I think the work I’m doing is really innovative and has the potential to revolutionize medical therapies. Plus, being able to talk to like-minded individuals is something I’ve always enjoyed doing and found very rewarding,” Kandula says. “It also opens your mind to other types of research that addresses similar questions using different, unique approaches.”

After spending his first two years at Northwestern conducting basic science research in molecular biosciences, Kandula joined a new subgroup last summer led by Joseph Muldoon, a fifth year Interdisciplinary Biological Sciences (IBiS) Program graduate student in the lab of CLP member Josh Leonard, Associate Professor of Chemical and Biological Engineering. The subgroup’s aim is to develop a framework that will allow for the implementation of customizable therapeutic strategies. Currently, therapies such as CAR T-Cells will search for one antigen before invoking an immune response. Muldoon’s group aims to develop a platform that would enable cells to sense multiple cues and integrate this information to induce a more appropriate immunological response. This would greatly improve the specificity of cell-based devices to create safe, effective and long – lasting treatments.

“A big reason I decided to pursue research in a new field was because I wanted to do something that was more in line with medical therapeutics; I wanted to work on a project that I thought could scale to actual medical treatment,” says Kandula.

“Traditional labs have people who are primarily chemists or biologists, but I gravitated towards a CLP lab because these labs have individuals who integrate viewpoints and approaches from various fields to tackle problems in a more well informed manner,” he said.

For example, although the Leonard lab mostly focuses on developing cellular devices and biomolecular engineering, Kandula likes how the lab aims to solve medical challenges using a design driven research process. Before conducting experiments in the wet lab, the researchers first use computational models and statistical analyses to accurately predict experimental outcomes in order to develop platforms that look promising. The team also utilizes the High Throughput Analysis Lab, one of eight core facilities managed by CLP, to rapidly screen and characterize the behavior of their engineered mammalian cells.

Another passion that drives Kandula is the idea of practicing medicine, with a likely focus in neuro-oncology.

“Before I was born, my grandfather had a stroke that paralyzed him on one side of the body,” says Kandula.  “When I was in third grade, he had another stroke that paralyzed him on the other side, so while he was still able to comprehend and was aware of everything that was going on around him, he wasn’t able to respond, react, or communicate his thoughts in any way.”

The mystery behind his grandfather’s condition baffled the 10-year-old and motivated him to work with mostly elderly patients in a rehabilitation center while in high school. “Elderly patients always have a story to share and it was very enlightening to learn so many things from all these people who were from different cultures, backgrounds, and socio-economic status,” he says. “The experience as a whole was very, very rewarding and further cemented my desire to pursue medicine.”

Despite his busy schedule, Kandula also volunteers for NU Tutors, a campus organization that provides affordable tutoring and mentorship for Evanston high school students, and he is part of the school’s squash team which travels to the Northeast every winter to compete against teams from all over the country. His ideal career would encompass his love for teaching, biomedical research and collaborating with others.

“I’ve learned through talking to other physicians that you don’t have to limit yourself. You can still do everything you want to do as long as you’re focused, have a plan and are able to manage your time. Most of all, though, I hope to work with patients one-on-one because that’s kind of been the dream from day one.”

 

by Lisa La Vallee